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Abstract
We address the problem of identifying the (nonstationary) quantum systems that
admit supersymmetric dynamical invariants. In particular, we give a general
expression for the bosonic and fermionic partner Hamiltonians. Due to the
supersymmetric nature of the dynamical invariant the solutions of the time-
dependent Schrödinger equation for the partner Hamiltonians can be easily
mapped to one another. We use this observation to obtain a class of exactly
solvable time-dependent Schrödinger equations. As applications of our method,
we construct classes of exactly solvable time-dependent generalized harmonic
oscillators and spin Hamiltonians.

PACS numbers: 0365G, 1130P

1. Introduction

The problem of the solution of the time-dependent Schrödinger equation,

i
d

dt
|ψ(t)〉 = H(t)|ψ(t)〉 (1)

is as old as quantum mechanics. It is well known that this equation may be reduced to
the time-independent Schrödinger equation, i.e. the eigenvalue equation for the Hamiltonian,
provided that the eigenstates of the Hamiltonian are time independent1. The search for exact
solutions of the eigenvalue equation for the Hamiltonian has been an ongoing effort for the
past seven decades. A rather recent development in this direction is the application of the ideas
of supersymmetric quantum mechanics [2]. The main ingredient provided by supersymmetry
is that the eigenvectors of the bosonic and fermionic partner Hamiltonians are related by a
supersymmetry transformation [3]. Therefore, one can construct the solutions of the eigenvalue
problem for one of the partner Hamiltonians, if the other is exactly solvable. In general, this
method cannot be used to relate the solutions of the time-dependent Schrödinger equation
unless the partner Hamiltonians have time-independent eigenvectors. The aim of this paper is
to explore the utility of supersymmetry in solving time-dependent Schrödinger equation for a
general class of time-dependent Hamiltonians.

1 In this case, the adiabatic approximation is exact [1].
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This problem has been considered by Bagrov and Samsonov [4] and Cannata et al [5] for
the standard Hamiltonians of the form H = p2/(2m)+V (x; t) in one dimension. Our method
differs from those of these authors in the following way. First, we approach the problem
from the point of view of the theory of dynamical invariants [6, 7]. Dynamical invariants are
certain (time-dependent) operators with a complete set of eigenvectors that are exact solutions
of the time-dependent Schrödinger equation. We can easily use the ideas of supersymmetric
quantum mechanics to relate the solutions of the time-dependent Schrödinger equation for two
different Hamiltonians, if we can identify them with the bosonic and fermionic Hamiltonians
of a (not necessarily supersymmetric) Z2-graded quantum system admitting a supersymmetric
dynamical invariant. Unlike [4] and [5], we consider general even supersymmetric dynamical
invariants and use our recent results on the geometrically equivalent quantum systems [8] to give
a complete characterization of the time-dependent Hamiltonians that admit supersymmetric
dynamical invariants.

The organization of the paper is as follows. In section 2, we present a brief review of the
dynamical invariants and survey our recent results on identifying the Hamiltonians that admit
a given dynamical invariant. In section 3, we discuss the supersymmetric dynamical invariants
and we give a characterization of the quantum systems that admit a Hermitian supersymmetric
dynamical invariant. In sections 4 and 5, we apply our general results to obtain classes of exactly
solvable time-dependent generalized harmonic oscillators and spin systems, respectively. In
section 6, we compare our method with that of [4] and [5] and present our concluding remarks.

2. Dynamical invariants

By definition [6, 7], a dynamical invariant is a nontrivial solution I (t) of the Liouville–von-
Neumann equation

d

dt
I (t) = i[I (t),H(t)] (2)

where H(t) denotes the Hamiltonian.
Consider a Hermitian Hamiltonian H(t) admitting a Hermitian dynamical invariant I (t),

and suppose that I (t) has a discrete spectrum2. Then, equation (2) may be used to show that the
eigenvalues λn of I (t) are constant and the eigenvectors |λn, a; t〉 yield the evolution operator
U(t) for the Hamiltonian H(t) according to

U(t) =
∑
n

dn∑
a=1

unab(t)|λn, a; t〉〈λn, b; 0|. (3)

Heren is a spectral label, a ∈ {1, 2, . . . , dn} is a degeneracy label, dn is the degree of degeneracy
of λn, the eigenvectors |λn, a; t〉 are assumed to form a complete orthonormal basis of the
Hilbert space, unab(t) are the entries of the solution of the matrix Schrödinger equation

i
d

dt
un(t) = �(t)un(t) un(0) = 1 (4)

�(t) := En(t) − An(t) (5)

and En(t) and An(t) are matrices with entries

En
ab := 〈λn, a; t |H(t)|λn, b; t〉 An

ab := i〈λn, a; t | d

dt
|λn, b; t〉 (6)

respectively [7, 9]. Note that En(t),An(t),�n(t) are Hermitian matrices and un(t) is unitary.

2 The generalization to a continuous spectrum is not difficult.
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In view of equation (3),

|ψn, a; t〉 := U(t)|λn, a; 0〉 =
dn∑
b=1

unba(t)|λn, b; t〉 (7)

are solutions of the Schrödinger equation (1). These solutions actually form a complete
orthonormal set of eigenvectors of I (t). We may use this observation or alternatively
equation (3) to show

I (t) = U(t)I (0)U †(t). (8)

Now, suppose that I (t) is obtained from a parameter-dependent operator I [R̄] as I (t) =
I [R̄(t)] where:

(1) R̄ = (R̄1, R̄2, . . . , R̄r ), R̄i are real parameters denoting the coordinates of points of a
parameter manifold M̄;

(2) R̄(t) determines a smooth curve in M̄;
(3) I [R̄] is a Hermitian operator with a discrete spectrum;
(4) (in local coordinate patches of M̄) the eigenvectors |λn, a; R̄〉 of I [R̄], i.e. the solutions

of

I [R̄]|λn, a; R̄〉 = λn|λn, a; R̄〉 with a ∈ {1, 2, . . . , dn} (9)

are smooth (single-valued) functions of R̄;
(5) λn and dn are independent of R̄;
(6) |λn, a; R̄〉 form a complete orthonormal basis.

In the following, we shall identify |λn, a; t〉 with |λn, a; R̄(t)〉 and express |λn, a; R̄〉 in the
form

|λn, a; R̄〉 = W [R̄]|λn, a; R̄(0)〉 (10)

where W [R̄] is a unitary operator and W = W [R̄] defines a single-valued function of R̄.
Equations (9) and (10) suggest

I [R̄] = W [R̄]I (0)W [R̄]†. (11)

For a closed curve R̄(t), there exists T ∈ R
+ such that R̄(T ) = R̄(0), and the quantity

�n(T ) := T ei
∫ T

0 An(t ′) dt ′ = Pei
∮
An

(12)

yields the non-Abelian cyclic geometric phase [7,10,11] associated with the solution |ψn; a; t〉.
In equation (12), T and P respectively denote the time-ordering and path-ordering operators,
the loop integral is over the closed path R̄(t) and An is the nondegenerate non-Abelian
generalization of the Berry connection one-form [12, 13]. The latter is defined in terms of
its matrix elements:

An
ab[R̄] := i〈λn, a; R̄|d̄|λn, b; R̄〉 (13)

where d̄ = ∑
i dR̄

i ∂/∂R̄i is the exterior derivative operator on M̄ . If λn is nondegenerate,
�n(t) is just a phase factor. It coincides with the (nonadiabatic) geometric phase of Aharonov
and Anandan [14].

Next, we introduce W(t) := W [R̄(t)]. Then as discussed in [8], Hermitian Hamiltonians
that admit the invariant

I (t) = W(t)I (0)W(t)† (14)

have the form

H(t) = W(t)Y (t)W(t)† − iW(t)
d

dt
W(t)† (15)
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where Y (t) is any Hermitian operator commuting with I (0). Note that according to
equation (15), H(t) is related to Y (t) by a time-dependent (canonical) unitary transformation
of the Hilbert space [7, 8, 15, 16], namely |ψ(t)〉 → W(t)|ψ(t)〉. This observation may be
used to express the evolution operator U(t) of H(t) in the form

U(t) = W(t)V (t) (16)

where V (t) := T e−i
∫ t

0 Y (t ′) dt ′ is the evolution operator for Y (t). Note that Y (t) commutes with
I (0), therefore if I (0) has a nondegenerate spectrum, Y (t) has a constant eigenbasis. In this
case, Y (t) with different t commute and

V (t) = e−i
∫ t

0 Y (t ′) dt ′ . (17)

Having expressed U(t) in terms of Y (t) and W(t), we can write the solutions (7) of the
Schrödinger equation in the form

|ψn, a; t〉 := W(t)V (t)|λn, a; 0〉 =
dn∑
b=1

V n
ab(t)W(t)|λn, b; 0〉 =

dn∑
b=1

V n
ab(t)|λn, b; t〉 (18)

where V n
ab(t) := 〈λn, a; 0|V (t)|λn, b; 0〉. If Y (t) with different values of t commute, this

equation takes the form

|ψn, a; t〉 := e−i
∫ t

0 yna (t
′) dt ′ |λn, a; t〉

where yna (t) := 〈λn, a; 0|Y (t)|λn, a; 0〉.
We conclude this section by emphasizing that equations (15) and (16) are valid for any

time-dependent unitary operatorW(t) satisfying equation (14). For example, one may identify
W(t) with the evolution operator of another Hamiltonian that admits the same invariant I (t).
Note that in general such a choice of W(t) cannot be expressed as the image of a curve
R̄(t) under a single-valued function W [R̄]. In particular, |λn, a; t〉′ := W(t)|λn; a; 0〉 cannot
be written as |λn, a; R̄(t)〉 for parameter-dependent vectors |λn, a; R̄〉 that are single-valued
functions of R̄. This in turn implies that |λn, a; t〉′ cannot be used in the calculation of the
geometric phases.

3. Z2-graded systems admitting supersymmetric invariants

A Z2-graded quantum system [17] is a system whose Hilbert space H̃ is the direct sum of two
of its nontrivial subspaces H±, i.e. H̃ = H+ ⊕ H−, and whose Hamiltonian maps H± to H±.
The elements of H+ and H− are respectively called bosonic and fermionic state vectors, or
graded state vectors with definite grading (or chirality) zero and unity. Operators preserving
the grading of the graded state vectors are called even operators. Those that change the grading
of these state vectors are called odd operators.

In the two-component representation of the Hilbert space, where the first component |ψ+〉
denotes the bosonic and the second component |ψ−〉 denotes the fermionic part of a state vector
|ψ〉 = |ψ+〉 + |ψ−〉, the Hamiltonian has the form

H(t) =
(
H+(t) 0

0 H−(t)

)
. (19)

Here H+(t) : H+ → H+ and H−(t) : H− → H− are Hermitian operators. They are
respectively called the bosonic and fermionic Hamiltonians.

Now, suppose that H+ = H− =: H and consider a parameter-dependent odd operator
Q = Q[R̄] and an even Hermitian operator I = I [R̄] that satisfy the algebra of N = 1
supersymmetric quantum mechanics [3]:

Q2 = 0 [Q, I ] = 0 {Q,Q†} = 2I. (20)
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In particular, suppose that in the two-component representation of the Hilbert space

Q =
(

0 0
d 0

)

where d = d[R̄] is a linear operator. This choice of Q satisfies the superalgebra (20) provided
that

I =
(
I+ 0
0 I−

)
(21)

with

I+ := 1
2 d

†d I− := 1
2 dd

†. (22)

As is well known from the study of the spectral properties of supersymmetric systems,
one can use equations (22) to derive the following properties of I±.

• I+ and I− have non-negative spectra with the same set of positive eigenvalues λn.
• The degree of degeneracy dn of λn > 0 as an eigenvalue of I+ is the same as its degree of

degeneracy as an eigenvalue of I−.
• Orthonormal eigenvectors |λn, a,±; R̄〉 of I±[R̄] associated with λn > 0 are related

according to

d[R̄]|λn, a,+; R̄〉 =
√

2λn
dn∑
b=1

vba[R̄]|λn, b,−; R̄〉 (23)

d†[R̄]|λn, b,−; R̄〉 =
√

2λn
dn∑
a=1

vab[R̄]†|λn, a,+; R̄〉 (24)

where vab[R̄] are the entries of a unitary dn × dn matrix v[R̄]. In particular, for a given
orthonormal set {|λn, a,+; R̄〉 | λn > 0} of the eigenvectors of I+[R̄],

|λn, a,−; R̄〉 := (2λn)
−1/2d[R̄]|λn, a,+; R̄〉

form a complete orthonormal eigenbasis of I−[R̄] for H− − Ker(I−[R̄]). Here ‘Ker’
denotes the kernel or the eigenspace with zero eigenvalue.

Next, we introduce I (t) := I [R̄(t)] and I±(t) := I±[R̄(t)] for some curve R̄(t) in the
parameter space M̄ and demand that I (t) is a dynamical invariant for the Hamiltonian H(t).
In view of equations (2), (19), (21), and (22), I±(t) is a dynamical invariant for H±(t).

We can write I±[R̄] in the form (11) by requiring d[R̄] to satisfy

d[R̄] = W−[R̄]d(0)W+[R̄]† (25)

where d(t) := d[R̄(t)] and W±[R̄] fulfil

|λn, a,±; R̄〉 = W±[R̄]|λn, a,±; R̄(0)〉. (26)

In view of equations (22) and (25),

I±[R̄] = W±[R̄]I±(0)W±[R̄]†. (27)

Moreover, employing equations (15) and (16), we can express the Hamiltonians H±(t)
and their evolution operators U±(t) in the form

H±(t) = W±(t)Y±(t)W±(t)† − iW±(t)
d

dt
W±(t)† (28)

U±(t) = W±(t)V±(t) V±(t) := T e−i
∫ t

0 Y±(t ′) dt ′ (29)
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where Y±(t) are Hermitian operators satisfying

[Y±(t), I±(0)] = 0. (30)

For example, we can choose Y±(t) = Pt(I±(0)) where Pt is a polynomial with time-dependent
coefficients.

In view of equation (18), we have the following set of orthonormal solutions of the
Schrödinger equation for the Hamiltonians H±(t).

|ψn, a,±; t〉 =
dn∑
b=1

V n
ab±(t)|λn, b,±; t〉 (31)

whereV n
ab±(t) := 〈λn, a,±; 0|V±(t)|λn, b,±; 0〉. As we discussed above, given an eigenbasis

|λn, a,+; t〉 for I+(t) we can set

|λn, a,−; t〉 = (2λn)
−1/2d(t)|λn, a,+; t〉 for λn > 0.

This identification may be used to relate the solutions (31) according to

|ψn, a,−; t〉 = (2λn)
−1/2

dn∑
b,c=1

V n∗
ca+(t)V

n
cb−(t) d(t)|ψn, b,+; t〉 ∀λn > 0. (32)

For the case where Y±(t) with different t commute, equations (31) and (32) take the form

|ψn, a,±; t〉 = e−i
∫ t

0 yna±(t
′) dt ′ |λn, a,±; t〉 (33)

|ψn, a,−; t〉 = (2λn)
−1/2ei

∫ t

0 [yna+(t
′)−yna−(t

′)] dt ′ d(t)|ψn, a,+; t〉 ∀λn > 0 (34)

respectively. Here yna±(t) := 〈λn, a,±; 0|Y±(t)|λn, a,±; 0〉.
The above construction is valid for any choice of time-dependent unitary operators W±(t)

satisfying

d(t) = W−(t)d(0)W+(t)
†. (35)

These observations together with equation (8) suggest a method of generating a class of exactly
solvable time-dependent Schrödinger equations. This is done according to the following
prescription.

(1) Choose a Hamiltonian H+(t) whose time-dependent Schrödinger equation is exactly
solvable, i.e., its evolution operator U+(t) is known.

(2) Choose an arbitrary constant operator d0 and a unitary operatorW−(t) satisfyingW−(0) =
1.

(3) Set I+(0) := d
†
0d0/2, I−(0) := d0d

†
0/2, and W+(t) = U+(t). Then, by construction

I+(t) := U+(t)I+(0)U
†
+ is a dynamical invariant for H+(t). It also satisfies I+(t) =

d(t)†d(t)/2 for d(t) := W−(t)d0U+(t)
†. Note that, in view of equation (28) and the

Schrödinger equation

i
d

dt
U+(t) = H+(t)U+(t) (36)

this choice of W+(t) corresponds to taking Y+(t) = 0.
(4) LetY−(t)be a Hermitian operator commuting with I−(0). Then according to equation (28),

H+(t) and

H−(t) := W−(t)Y−(t)W−(t)† − iW−(t)
d

dt
W−(t)† (37)

are partner Hamiltonians, and H−(t) admits the invariant I−(t) := W−(t)I−(0)W−(t)†.
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The choiceW+(t) = U+(t) also implies that |λn, a,+; t〉 = U+(t)|λn, a,+; 0〉 are solutions
of the Schrödinger equation (1) for H+(t). Furthermore, for all λn > 0,

|ψn, a,−; t〉 = (2λn)
−1/2

dn∑
b=1

V n
ab−(t)d(t)|λn, b,+; t〉 (38)

are solutions of the Schrödinger equation for the Hamiltonian H−(t). These solutions span
H− − Ker(I−(0)) = H− − Ker(d0). Again if Y−(t) with different values of t commute, we
have

|ψn, a,−; t〉 = (2λn)
−1/2e−i

∫ t

0 yna−(t
′) dt ′ d(t)|λn, a,+; t〉 ∀λn > 0. (39)

One can also employ an alternative construction for the Hamiltonian H−(t) in which one
still defines I+(t) according to I+(t) := U+(t)I+(0)U+(t)

† but uses another unitary operator
W+(t) to express it as I+(t) = W+(t)I+(0)W+(t)

†. In this way, one may choose W+(t) to be the
image of a curve R̄(t) in a parameter space M̄ under a single-valued function W+ = W+[R̄].
This is especially convenient for addressing the geometric phase problem for the Hamiltonians
H±(t). Following this approach, one must determine Y+(t) according to equation (28), i.e.

Y+(t) = W+(t)
†H+(t)W+(t) − iW+(t)

† d

dt
W+(t). (40)

One then obtains the Hamiltonian H−(t) by substituting (40) in (28).

4. Partner Hamiltonians for the unit simple harmonic oscillator Hamiltonian

In this section we explore the partner Hamiltonians for the Hamiltonian of the unit simple
harmonic oscillator:

H+ = 1
2 (p

2 + x2) = a†a + 1
2 = a a† − 1

2 . (41)

Here p and x are respectively the momentum and position operators and a := (x + ip)/
√

2.
Let W−(t) be a unitary operator satisfying W−(0) = 1 and

d(t) := W−(t)a†. (42)

Then I+ = d†d/2 = a a†/2 is a dynamical invariant for H+. This invariant together with

I−(t) = 1
2 d(t)d(t)

† = 1
2W−(t)a†a W−(t)† (43)

form a supersymmetric dynamical invariant. The associated ‘fermionic’ partner Hamiltonian
is given by equation (37) where Y−(t) is a Hermitian operator commuting with I−(0) = a†a/2.

For example, let

Y−(t) = f (t)

4
(2a†a + 1) = f (t)

4
(p2 + x2) (44)

where f (t) is a real-valued function, and W−(t) = W−[θ(t), ϕ(t)] where

W−[θ, ϕ] := e−iϕK3 e−iθK2 eiϕK3 (45)

K1 := 1
4 (x

2 − p2) K2 := − 1
4 (xp + px) K3 := 1

4 (x
2 + p2) (46)

θ ∈ R, and ϕ ∈ [0, 2π). Note that Y−(t) with different values of t commute and the operators
Ki are generators of the group SU(1, 1) in its oscillator representation. The parameter space
of the operator W− is the unit hyperboloid:

M̄ = {(R̄1, R̄2, R̄3) ∈ R
3 | − (R̄1)2 − (R̄2)2 + (R̄3)2 = 1}.

We have made the choices (44) and (45) for Y−(t) and W−(t) in view of the following
considerations.
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(1) Up to a trivial addition of a multiple of identity, (44) is the most general expression for a
second-order differential operator commuting with I−(0).

(2) Every element of the (oscillator representation of the) Lie algebra of SU(1, 1) may be
expressed as W−Y−W

†
− with Y− and W− given by equations (44) and (45), respectively. In

particular, as we show in the following, these choices lead to the most general expression
for an invariant I−(t) and a Hamiltonian H−(t) belonging to (the oscillator representation
of the) Lie algebra of SU(1, 1).

In order to compute the Hamiltonian H−(t), we substitute equations (44) and (45) in (37)
and use the su(1, 1) = so(2, 1) algebra,

[K1,K2] = −iK3 [K2,K3] = iK1 [K3,K1] = iK2

and the Backer–Campbell–Hausdorff formula to compute the right-hand side of the resulting
equation. We then find, after a rather lengthy calculation,

H−(t) =
3∑

i=1

Ri(t)Ki (47)

where

R1(t) := sinh θ(t) cosϕ(t)[2f (t) − ϕ̇(t)] − sin ϕ(t)θ̇(t) (48)

R2(t) := sinh θ(t) sin ϕ(t)[2f (t) − ϕ̇(t)] + cosϕ(t)θ̇(t) (49)

R3(t) := 2 cosh θ(t)f (t) + [1 − cosh θ(t)]θ̇ (t) (50)

and a dot denotes a time derivative.
As seen from equations (46) and (47), H−(t) is the Hamiltonian of a time-dependent

generalized harmonic oscillator [7] with three free functions f (t), θ(t) and ϕ(t). According
to our general analysis, the corresponding Schrödinger equation is exactly solvable. The
evolution operator is given by

U−(t) = e−iϕ(t)K3 e−iθ(t)K2 eiK3[ϕ(t)−F(t)]

whereF(t) = ∫ t

0 f (t
′) dt ′. Furthermore, we can use the stationary solutions of the Schrödinger

equation for the unit simple harmonic oscillator (41) to construct solutions of the Schrödinger
equation for H−(t). The stationary solutions for the Hamiltonian (41) are

|ψn,+; t〉 := e−itEn |n〉 (51)

where En = n + 1/2, |n〉 = (n!)−1/2a†n|0〉 and |0〉 is the ground state vector for the unit
simple harmonic oscillator (41) given by 〈x|0〉 = π−1/4e−x2/2. In view of equations (34), (42),
and (51), we have the following orthonormal solutions of the Schrödinger equation for H−(t).

|ψn,−; t〉 = (n + 1)−1/2e−itEne−iF(t)K3W−(t)a†|n〉 = e−iζn(t)e−i[F(t)+ϕ(t)]K3 e−iθ(t)K2 |n + 1〉
(52)

where ζn(t) := [t − ϕ(t)/2]n + t/2 − 3ϕ(t)/4. Next, we use the identity [18]

eiθK2 |x〉 = |eθ/2x〉
and the expression for the propagator of the unit simple harmonic oscillator [19], namely

U(x, t; x ′, 0) := 〈x|U(t)|x ′〉 = (2π i sin t)−1/2ei[(x2+x ′2) cos t−2xx ′]/2 sin t

to compute the solutions (52) in the position representation. This yields

〈x|ψn,−; t〉 = e−iζn(t)
∫ ∞

−∞
U(x, F (t) + ϕ(t); x ′, 0)φn+1(e

θ(t)/2x ′) dx ′

where φn(x) := 〈x|n〉 are the eigenfunctions of the unit simple harmonic oscillator
Hamiltonian (41).
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5. Partner Hamiltonians for the dipole interaction Hamiltonian of a spinning particle in
a constant magnetic field

Consider the dipole interaction Hamiltonian of a spinning particle in a constant magnetic field:

H = bJ3 (53)

whereb is constant (Larmor frequency), the magnetic field is assumed to be directed along the z-
direction and J3 denotes the z-component of the angular momentum operator J = (J1, J2, J3)

of the particle. Let W−(t) be a unitary operator satisfying W−(0) = 1 and

d(t) := W−(t)J+ (54)

where J± := J1 ± iJ2 = J
†
∓. Then, in view of the identity

[J−J+, J3] = 0 (55)

the operator

I+ = d†d/2 = J−J+/2 (56)

is a dynamical invariant for H+. Equation (55) follows from the su(2) = so(3) algebra,

[J1, J2] = iJ3 [J2, J3] = iJ1 [J3, J1] = iJ2 (57)

satisfied by Ji , the fact that J2 is a Casimir operator, i.e. [J2, Ji] = 0, and the relation

J−J+ = J 2
1 + J 2

2 − J3 = J2 − J3(J3 + 1). (58)

The invariant I+ together with

I−(t) = 1
2 d(t)d(t)

† = 1
2W−(t)J+J−W−(t)† (59)

form a supersymmetric dynamical invariant. The associated ‘fermionic’ partner Hamiltonian is
given by equation (37) where Y−(t) is a Hermitian operator commuting with I−(0) = J+J−/2.

Next, we note that [J+J−, J3] = 0. This suggests that we may choose Y−(t) as a
polynomial in J3 with time-dependent coefficients. For example, we may set

Y−(t) = f (t)J3 (60)

where f (t) is a real-valued function. With this choice of Y−, we can construct a class of
partner Hamiltonians H−(t) for H+ representing the dipole interaction of a spinning particle in
a time-dependent magnetic field, provided that we choose W−(t) = W−[θ(t), ϕ(t)] according
to [7, 20]

W−[θ, ϕ] := e−iϕJ3 e−iθJ2 eiϕJ3 (61)

where θ ∈ [0, π) and ϕ ∈ [0, 2π). Note that again Y−(t) with different values of t commute,
the parameter space of the operator W− is the unit sphere, and θ and ϕ are respectively the
polar and azimuthal angles3.

The calculation of Hamiltonian H−(t) for these choices of Y− and W− is similar to that
of section 4. Substituting equations (60) and (61) in (37) and using the su(2) algebra (57) and
the Backer–Campbell–Hausdorff formula, we find

H−(t) =
3∑

i=1

Ri(t)Ji (62)

3 As described in [7, 20], it turns out that W− as given by equation (61) fails to be single valued at the south pole
(θ = π ). One can alternatively change the sign of θ on the right-hand side of (61), in which case W− becomes single
valued for all values of θ and ϕ except for θ = 0, i.e. the north pole.
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where

R1(t) := sin θ(t) cosϕ(t)[2f (t) − ϕ̇(t)] − sin ϕ(t)θ̇(t) (63)

R2(t) := sin θ(t) sin ϕ(t)[2f (t) − ϕ̇(t)] + cosϕ(t)θ̇(t) (64)

R3(t) := 2 cos θ(t)f (t) + [1 − cos θ(t)]θ̇ (t). (65)

As seen from these equations, the fermionic partner Hamiltonians (62) to the bosonic
Hamiltonian (53) also belong to the Lie algebra su(2); they form a three-parameter family
of dipole Hamiltonians describing spinning particles in time-dependent magnetic fields. The
solution of the Schrödinger equation for this type of Hamiltonian has been extensively studied
in the literature. A rather comprehensive list of references may be found in [7].

In view of equations (29), (60), and (61), the evolution operator for the Hamiltonian (62),
for arbitrary choices of functions f, θ , and ϕ, is given by

U−(t) = e−iϕ(t)J3 e−iθJ2 ei[ϕ(t)−F(t)]J3 (66)

where F(t) := ∫ t

0 f (t
′) dt ′. Moreover, using the supersymmetric nature of our construction,

we may construct a set of orthonormal solutions |ψm,−; t〉 of the Schrödinger equation for
this Hamiltonian from those of the constant Hamiltonian (53).

In order to compute these solutions, we first note that W+(t) = 1. Therefore, in view of
equation (40), Y+(t) = H+(t) = bJ3. Furthermore, because I+ commutes with J3, we may set

|λm,+; t〉 = |j,m〉 (67)

where |j,m〉 are the well known orthonormal angular basis vectors satisfying

J3|j,m〉 = m|j,m〉 J2|j,m〉 = j (j + 1)|j,m〉 (68)

j ∈ {0,±1/2,±1,±3/2, . . .} labels the total angular momentum (spin) of the particle
and m ∈ {−j,−j + 1, . . . , j − 1, j} is the magnetic quantum number. Now, in view of
equations (56), (58) and (67), the eigenvalues of I+ are given by

λm = 〈j,m|I+|j,m〉 = j (j + 1) − m(m + 1). (69)

The solutions of the Schrödinger equation for the Hamiltonian (53) that are associated with
this choice of |λm,+; t〉 are the stationary solutions

|ψm,+; t〉 = e−itH+ |j,m〉 = e−ibtm|j,m〉. (70)

Under the supersymmetry transformation, |ψm,+; t〉, withm < j , are mapped to the following
solutions of the Schrödinger equation for the Hamiltonian (62).

|ψm,−; t〉 =
√

(j − m)(j + m + 1)

2[j (j + 1) − m(m + 1)]
ei[(m+1)ϕ(t)−F(t)]e−iϕ(t)J3 e−iθ(t)J2 |j,m + 1〉. (71)

Note that here m ∈ {−j,−j + 1, . . . , j − 2, j − 1} and we have made use of equation (34)
and the relations

y+(t) = 〈j,m|Y+(t)|j,m〉 = bm y−(t) = 〈j,m|Y−(t)|j,m〉 = f (t)m

J+|j,m〉 =
√
(j − m)(j + m + 1) |j,m + 1〉.

Next, consider the special case of the Hamiltonians (62) obtained by choosing θ = constant
and ϕ = ωt for some ω ∈ R

+, namely

H−(t) = br(t)
{
f1(t)[cos(ωt)J1 + sin(ωt)J2] + f2(t)J3

}
r(t) := b−1

√
4f (t)2 + [ω − 4f (t)]ω sin2 θ

f1(t) := sin θ [2f (t) − ω]/[br(t)] f2(t) := 2 cos θf (t)/[br(t)].

(72)
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These correspond to the dipole Hamiltonians for which the direction of the magnetic field
precesses about the z-axis and its magnitude is an arbitrary function of time. The case of the
constant magnitude is obtained by setting f = constant. This is the well known case of a
spin in a precessing magnetic field originally studied in [21]. For a more recent treatment
see [7, 20].

In section 4, we restricted ourselves to the study of the quadratic invariants (the invariants
that are second-order differential operators). This restriction determined the expression for
the operator Y−(t). A choice of Y−(t) which includes cubic or higher powers of p would lead
to the fermionic partner Hamiltonians that cannot be expressed as second-order differential
operators. An analogue of this restriction for the systems considered in this section is the
condition that Y−(t) should belong to the Lie algebra su(2) = so(3). Unlike the case of the
harmonic oscillators, a violation of this condition does not lead to any serious problem for the
spin systems. For example, if we take

Y−(t) = f (t)J3 + g(t)J 2
3 (73)

but keep the same choice for W−(t), i.e.(̃61), we are led to a class of exactly solvable fermionic
partner Hamiltonians of the form

H ′
−(t) = H−(t) + H̃−(t) (74)

where H−(t) is given by equation (62) and H̃−(t) is a general quadratic Stark Hamiltonian
describing the quadrupole interaction of a spinning particle with the magnetic field [22]. A
straightforward calculation yields

H̃−(t) = g(t)W−(t)J 2
3 W−(t)† = g(t)[W−(t)J3W−(t)†]2 = g(t)

[ 3∑
i=1

R̃i(t)Ji

]2

R̃1(t) := sin θ(t) cosϕ(t) R̃2(t) := sin θ(t) sin ϕ(t) R̃3(t) := cos θ(t).

(75)

The Hamiltonian (75) belongs to the class of quadrupole Hamiltonians

H̃ (t) =
3∑

i,j=1

Qij (t)JiJj (76)

whose algebraic and geometric structure has been studied in [23,24]. In particular, up to trivial
addition of a multiple of identity, any quadrupole Hamiltonian may be written in the form
H̃ (t) = ∑4

α=0 ρ
αeα where ρα are real parameters and

e0 := J 2
3 − J2/3 e1 := (J1J3 + J3J1)/

√
3 e2 := (J2J3 + J3J2)/

√
3

e3 := (J 2
1 − J 2

2 )/
√

3 e4 := (J1J2 + J2J1)/
√

3.

Furthermore, the commutators [eα, eβ] =: Tα,β generate the group Spin(5) = Sp(2) that acts
on the set of all quadrupole Hamiltonians [23]4.

These observations suggest that one may construct supersymmetric dynamical invariants
whose bosonic and fermionic components are linear combinations of the generators Tαβ ; i.e.,
they belong to the Lie algebra of Spin(5), i.e. so(5) = sp(2). This in turn implies that they
may be obtained from constant elements of so(5) by SO(5) rotations [23].

Next, observe that both e0 and e4 commute with J3. Therefore, in our construction of the
partner Hamiltonians for the constant dipole Hamiltonian (53), we may take Y−(t) = ξ(t)T04,
where ξ is a real-valued function of time. Now, if we take

W−(t) = e
∑4

α,β=0 R
αβ(t)Tαβ

4 The quadrupole Hamiltonians (76) also arise in the study of the adiabatic evolution of a complex scalar field in a
Bianchi type IX background spacetime [25].
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for arbitrary functions Rαβ , we obtain the most general invariant I−(t) belonging to so(5). By
construction, the corresponding fermionic partner Hamiltonians H−(t) will constitute a large
class of time-dependent exactly solvable Hamiltonians belonging to the Lie algebra so(5). The
explicit calculation of H−(t) requires an appropriate parametrization of the operator W− in
terms of the coordinates of its parameter space.

6. Discussions and conclusion

In this paper we have studied supersymmetric dynamical invariants. For a given time-dependent
Hamiltonian H+(t), we have constructed a supersymmetric dynamical invariant I (t) and an
associated partner HamiltonianH−(t) such that the bosonic part of I (t) is a dynamical invariant
for H+(t) and the fermionic part of I (t) is a dynamical invariant for H−(t). We have shown
how the solutions of the Schrödinger equation for H+(t) may be used to obtain solutions of
the Schrödinger equation for H−(t).

In order to compare our approach with those of [4,5], we note that we could construct an
even supersymmetric invariant of the form (21) by requiring the supersymmetric charge Q to
be a dynamical invariant. It is not difficult to show that substituting Q in the Liouville–von-
Neumann equation yields the intertwining relation

d

[
i

d

dt
− H+(t)

]
=

[
i

d

dt
− H−(t)

]
d (77)

for the operator d . Note that this relation is only a sufficient condition for I = {Q,Q†}/2 to be
a dynamical invariant. This in turn implies that our method is more general than that of [4,5].
One way to see this is to substitute equation (25) in (77). Using equations (28) and (30), one
can then reduce (77) to

d0Y+(t) = Y−(t)d0.

It is not difficult to construct operators Y±(t) that commute with I±(0) but do not satisfy this
equation.
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